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The unidirectional emptying box
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A theoretical description of the turbulent mixing within and the draining of a
dense fluid layer from a box connected to a uniform density, quiescent environment
through openings in the top and the base of the box is presented in this paper.
This is an extension of the draining model developed by Linden et al. (Annu. Rev.
Fluid Mech. vol. 31, 1990, pp. 201–238) and includes terms that describe localized
mixing within the emptying box at the density interface. Mixing is induced by
a turbulent flow of replacement fluid into the box and as a consequence we
predict, and observe in complementary experiments, the development of a three-
layer stratification. Based on the data collated from previous researchers, three
distinct formulations for entrainment fluxes across density interfaces are used to
account for this localized mixing. The model was then solved numerically for the
three mixing formulations. Analytical solutions were developed for one formulation
directly and for a second on assuming that localized mixing is relatively weak though
still significant in redistributing buoyancy on the timescale of the draining process.
Comparisons between our theoretical predictions and the experimental data, which
we have collected on the developing layer depths and their densities show good
agreement. The differences in predictions between the three mixing formulations
suggest that the normalized flux turbulently entrained across a density interface tends
to a constant value for large values of a Froude number FrT , based on conditions of
the inflow through the top of the box, and scales as the cube of FrT for small values
of FrT . The upper limit on the rate of entrainment into the mixed layer results in a
minimum time (tD) to remove the original dense layer. Using our analytical solutions,
we bound this time and show that 0.2tE � tD � tE , i.e. the original dense layer may
be depleted up to five times more rapidly than when there is no internal mixing and
the box empties in a time tE .
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1. Introduction
We consider the ‘emptying-box’ problem, that is the draining of a dense fluid

layer, under gravity, from a box connected to a less dense external environment via
a combination of openings in the top and base of the box. The density difference
between the dense fluid layer and stationary unstratified ambient is small compared
with the ambient density, and the two fluids are miscible. Figure 1 shows a schematic
of the box with (a) the initial two-layer stratification considered and (b) the typical
three-layer flow established during the flushing, i.e. following the opening of the vents.
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Figure 1. Schematics (upper panels) and associated shadowgraph images (lower panels) of a
typical emptying-box flow (R = 0.36, λT = 0.14 and ξ0 = 0.62, see (1.1)). (a) Initial conditions
(t = 0) – a layer of dense fluid (density ρ0, shown grey) below a layer at ambient density ρe

(shown white). (b) The basic three-layer stratification observed for t > 0. The arrows indicate
the volume fluxes in to and out of each of the three layers and the direction of flow through
the openings. Localized turbulent mixing by the inflow is clearly evident in the shadowgraph
at the lower density interface.

The main question, we address is how does the stratification within the emptying box
develop.

Linden, Lane-Serff & Smeed (1990) presented an analytical model allowing the
developing stratification to be predicted. Their model has provided a benchmark and
starting point for numerous subsequent studies (see Linden 1999, for a review) and is
applicable to initial conditions that result in minimal, or an absence of, mixing between
the inflowing fluid at ambient density and the dense layer within the box so that the
basic two-layer stratification is maintained throughout the draining period. As such
their work is applicable to the purging of heat at night by (idealized) displacement
ventilation from rooms or buildings in which the inflow of replacement air at low-level
displaces, but does not mix with, warmer internal air. Linden et al. (1990) restricted
their attention to horizontally oriented vents and we retain this orientation herein to
enable direct comparison. Full-scale thermal measurements in rooms (Etheridge &
Sandberg 1984) indicate that the developing stratification is somewhat more smeared
than the stratification Linden et al. (1990) assumed and the physical grounds for this
form is a focus of this study. They attribute the smearing to the effects of thermal
diffusion and radiation.

The Reynolds and Péclet numbers for the night purging of heat from rooms
are estimated to be O(103)–O(104) and O(102)–O(103), respectively (Etheridge &
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Sandberg 1984). Over the time scale of a typical purge, i.e. a few hours, thermal
diffusion for these high Péclet number flows does not provide the dominant mechanism
for the redistribution of buoyancy. Generally, we have observed on opening the top
and base vents in our experiments (a vertical inversion of the heated building example)
that localized turbulent mixing, driven by a jet-like inflow of replacement fluid, occurs
at the density interface causing dense fluid to be raised upwards (figure 1b). This
mixed fluid forms an intermediate or mixed layer that deepens to fill the box (Hunt &
Coffey 2010) rather than simply draining from the box. Turbulent mixing associated
with a high Reynolds number jet-like flow of replacement air into a room is therefore
likely to play a significant role in redistributing buoyancy and whilst a redistribution
of heat in a room is not expected to dramatically alter the instantaneous rate of
draining it would, for example, influence the comfort of occupants and impact on the
efficiency of heat removal (Coffey & Hunt 2007).

The establishment, by a turbulent inflowing jet, and subsequent development of
an intermediate layer as observed in our experiments are used herein to explain
some of the differences between stratifications measured in rooms and the idealized
displacement flow predictions of Linden et al. (1990). Whilst the orientation of
openings in a room may not always be horizontal, many being vertically oriented, we
anticipate that it is mixing induced by the inflow, rather than, for example, diffusion
that is primarily responsible for the redistribution of buoyancy and the departure
from a two-layer stratification.

Herein, we extend the Linden et al. (1990) model so that it may be applied
across a wider range of initial conditions and geometries for which interfacial mixing
significantly alters the form of the original two-layer stratification. Specifically, we
develop a predictive model that may be applied to general emptying-box flows for
which the direction of flow through both top and base openings remains constant
and in one sense, i.e. so-called ‘unidirectional’ emptying-box flows (Hunt & Coffey
2010). This new model includes terms to account for mixing within the box due to
the inflow through the top. By extending the Linden et al. (1990) model in this way,
we are able to explore how mixing alters the form of the developing stratification and
how the time taken to drain the original dense fluid layer is altered.

In the context of the primary application, namely, the passive night purging of heat
from a room, it may be advantageous to induce mixing by the inflow on particularly
cold evenings, and on warmer evenings to select a distribution and size of openings
that inhibit the onset of mixing. In the absence of mixing, internal temperatures would
fall as low as those in the external environment and potentially result in an overly
cooled room at the start the following day. In contrast, avoiding mixing on warmer
evenings and thereby flushing heat without diluting enhances the potential for cooling.
Besides building ventilation, the work we developed has a potentially wider impact
as the turbulent entrainment of fluid across density interfaces is of interest across a
range of problems encountered in the natural environment, especially in geophysical
fluid dynamics (Fernando & Smith 2001). Examples include atmospheric inversions
eroded by buoyant plumes (Willis & Deardorff 1981, 1983, 1987; Presley & Telford
1988; Park, Seo & Lee 2001) and the ocean mixed layer deepening by cool or salty
plumes (Thorpe 2005).

Hunt & Coffey (2010) identified, through a series of experiments, the initial
conditions which lead to unidirectional flow through openings and which lead to
bidirectional flow. We considered a box of height H and cross-sectional area S that
connected to a quiescent external environment through circular openings in the top
and base of areas aT and aB , respectively. The box initially contained a two-layer
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Figure 2. Plot of {FrT (0),FrB (0)}-space indicating four different draining behaviours. To the
right of the vertical dotted line showing FrT (0) = 0.67 an intermediate or middle layer develops
due to the interfacial mixing induced by inflow through the top. Above the horizontal line
showing FrB (0) = 0.33, purely unidirectional flow occurs through the base and top (Hunt &
Coffey 2010) – below this line, bidirectional flow is observed at the base. (Inset) Schematics
highlighting the key features of each flow pattern.

stratification with a dense-layer depth h0 as shown in figure 1(a). We showed that the
development of the stratification and the direction of flow through the openings can
be parameterized using three geometric ratios:

R =
aT

aB

, λT =

√
aT

h0

and ξ0 =
h0

H
, (1.1)

where λT is a Richardson number relating an initial buoyancy-induced velocity to
the initial velocity through the top opening. Two Froude numbers were formed from
these ratios. The first, FrT (0), characterizing the vigour of interfacial mixing driven
by the inflow through the top:

FrT (0) = 21/2 αjet

β
1/2
jet

λT

R

(
1

c2
B

+
1

c2
T R2

)−1/2 (
1

ξ0

− 1 + ẑv

)−3/2

, (1.2a)

where αjet =7.0 and βjet =0.107 are empirical constants, cT and cB are loss coefficients
(≈0.6) and ẑv = zv/h0 = λT /0.107π1/2 is an origin correction, and a second, FrB(0),
based on initial conditions at the base and characterizing whether a unidirectional
outflow or a bidirectional flow occurs at the base:

FrB(0) = 21/2λ
−1/2
T R1/4

(
1

c2
B

+
1

c2
T R2

)−1/2

. (1.2b)

Figure 2 shows how the {FrT (0), FrB(0)}-space divides into four regions, each region
with a distinct emptying behaviour as indicated by the inset schematics.
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We focus on the flows established within the region of {FrT (0), FrB(0)}-space
above the horizontal line. For these unidirectional flows, replacement fluid enters
solely through the top and dense fluid drains out through the base. The region
of parameter space considered (FrT (0) � 0.67, FrB(0) � 0.33) is readily achieved in
naturally ventilated buildings, see § 6. In fact, in the experiments we performed, the
resulting class of emptying-box flow was relatively straightforward to achieve in
contrast to idealized displacement flow – the latter required more extreme geometry
(R � 1) and shallow initial dense-layer depths ξ0.

In § 2, we develop a theoretical model for predicting the time-dependent
stratification and present analytical solutions (§ 4) for two special cases. The model
is subsequently validated against measurements made in our laboratory experiments
(§§ 3 and 4). Based on these results, we comment on the choice of formulation for
entrainment fluxes across density interfaces (§ 5.1). Finally, we examine the time taken
to deplete all fluid of the initial density ρ0 (§ 5.2) – in other words, the time for the
original dense fluid to drain from, or be mixed within, the interior so that no fluid of
density ρ0 remains thereafter.

2. Model development
The Linden et al. (1990) model is extended under the assumption that the

stratification for t > 0 consists of three layers. This differs from the original Linden
et al. (1990) model where two layers of uniform (and of the initial) density are assumed
to persist. The basic three-layer stratification can clearly be seen in the shadowgraph
image (figure 1b) and our assumption of three layers is consistent with quantitative
measurements of g′(z, t) made by Hunt & Coffey (2010) – the instantaneous reduced
gravity at a height z defined by g′(z) = g(ρ(z) − ρe)/ρe, where g is the acceleration
due to gravity and ρ(z) the density of fluid in the box at height z. The assumed
stratification (figure 1b) thus consists of a lower layer of depth hl(t) and uniform
density ρl(t) ≡ ρ0, a middle layer of depth hu(t)−hl(t) and uniform density ρm(t), and
an upper layer of depth H − hu(t) and uniform density ρu(t) ≡ ρe. Following Linden
et al. (1990), we focus on an insulated box so that there are no buoyancy transfers
between the boundaries and the fluid.

On opening the vents at t = 0, our observations confirm that an inflowing turbulent
jet at ambient density impinges on the density interface. This causes localized mixing
and fluid to be raised from the lower layer, and which subsequently spreads along the
interface as an intrusive gravity current, thereby forming a middle layer. The middle
layer is assumed to form rapidly compared with the overall time scale of the draining
process such that, at t = 0, the middle layer can be treated as infinitesimally thin.
This is consistent with approaches by other researchers, e.g. Baines & Turner (1969)
and Cardoso & Woods (1993), and with our experimental observations in which the
formation of the middle layer took 1 %–2 % of the time taken to empty the box tE ,
with that initial stratification and effective opening area, in the absence of mixing, see
Linden et al. (1990) and § 2.2.

Attention is restricted to geometries with S � {aT , aB} and to cases where the

characteristic Reynolds numbers (ReT =
√

aT g′
0h0/ν, ReB =

√
aBg′

0h0/ν, where ν is
the kinematic viscosity) for flow through the openings are large. Reynolds numbers
were typically of the order 104 and Péclet numbers of the order 106 in our experiments.
Additionally, our model is developed for a single circular inlet opening. No restrictions
are placed on the number of outlet openings.
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2.1. Conservation equations for the layers

There is a net volume flux out of the lower layer (0 � z � hl , figure 1b) due to the out-
ward flux through the base, Q, and due to the turbulent flux entrained into the (middle)
layer above at a rate Q∗. Thus, volume conservation for the lower layer requires

S
dhl

dt
= −(Q + Q∗). (2.1a)

For the middle layer (hl � z � hu), there is a volume flux Q∗ received from the layer
below (whilst this lower layer is maintained) and additionally from the jet-like inflow,
Qj . The reduced gravity of the jet is zero, and thus it does not contribute to the flux
of buoyancy supplied to the middle layer. Volume- and buoyancy-flux conservation
for the middle layer require, respectively

S
d

dt
(hu − hl) = Q∗ + Qj and S

d

dt
[g′

m(hu − hl)] = Q∗g′
l . (2.1b)

To close the problem, three fluxes are required: Q, Qj and Q∗.

2.1.1. Volume flux through the box (Q)

This flux is a function of the top and base opening areas, and the total buoyancy

B = S
∫ H

0
g′(z, t) dz within the box:

Q = A∗
(

B
S

)1/2

, A∗ =

(
1

2c2
Ba2

B

+
1

2c2
T a2

T

)−1/2

, (2.2)

where A∗ is the ‘effective opening area’, see Linden et al. (1990).

2.1.2. Volume flux in the jet-like inflow (Qj)

Assuming that the inflow behaves as a fully developed self-similar turbulent jet,
from classic jet scalings (Fischer et al. 1979), the centreline vertical velocity, jet width
and volume flux at the level of the upper interface are

wj = 7.0M
1/2
T L−1, bj = 0.107L and Qj = 0.25M

1/2
T L, (2.3)

respectively, where L = H − hu + zv is the distance between the virtual origin of the
jet (a distance zv above the top opening) and the upper interface. In (2.3), MT denotes
the momentum flux through the top opening at z = H , i.e. the source momentum flux
of the jet. Assuming the velocity profile across the opening is uniform, a reasonable
assumption for high Reynolds number flow, MT = Q2/aT . We have used a geometric
origin correction based on tracing the jet perimeter back to a point, thus setting
bj (z = H ) =

√
aT /π in (2.3), zv =

√
aT /π/0.107.

2.1.3. Volume flux entrained across the density interface (Q∗)

We consider the formulations for entrainment fluxes across density interfaces
developed by Baines (1975), Kumagai (1984) and Lin & Linden (2005). Baines
(1975) performed experiments investigating the entrainment due to turbulent plumes
and jets impinging on density interfaces. By tracking the position of the interface, he
inferred the volume flux turbulently entrained across it. Baines’s results agree with the
scalings of previous investigations (e.g. Linden 1973) with the entrainment flux being
proportional to the cube of a Froude number. Examination of the experimental data
(figure 2 in Baines 1975, and figure 3 herein) suggests

I.
Q∗

b2
l wl

= 0.67FrT
3, FrT =

wl√
bl�g′ , (2.4a)
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where bl and wl are the jet/plume width and centreline vertical velocity at the interface,
respectively. The width and velocity may be inferred from (2.3). The buoyancy
step across the interface is denoted �g′ = g′

l − g′
m. Baines (1975) assumed Gaussian

profiles for the velocity of the impinging flow, so we have rescaled his data, using
FrT tophat =2−5/4FrT Gaussian (as wtophat =2−1wGaussian and btophat = 21/2bGaussian) to infer the
constant of proportionality 0.67. The interfacial Froude numbers are estimated in our
model using the characteristic vertical velocity and width scales of a turbulent jet. For
t > 0, the inflow must penetrate a layer of fluid with reduced gravity g′

m (>0) and, as
a consequence, the impinging flow develops as a fountain in the middle layer. Kaye &
Hunt (2006) demonstrate for a wide range of fountain source Froude numbers Frf

that the flow in a fountain is jet-like over the vast majority of the rise height and
hence, the jet scalings adopted are expected to be appropriate.

Kumagai (1984) performed a series of experiments similar to those of Baines (1975).
Kumagai’s data suggest that the entrainment flux obeys the FrT

3 law for small Froude
numbers but tends to a constant value (of 0.56) for larger Froude numbers

II.
Q∗

b2
l wl

=
1.0FrT

3

1 + 3.1FrT
2 + 1.8FrT

3
. (2.4b)

Lin & Linden (2005) also investigated entrainment across density interfaces due to
the impingement of jets and plumes. For 0.9 � FrT � 2.2, i.e. towards the higher end
of FrT generally considered, the entrainment flux was approximately constant with

III.
Q∗

b2
l wl

≈ 2.0. (2.4c)

This flux is over four times greater than that expected from the empirical formulation
of Kumagai (1984) for large FrT . The result that Q∗ ∝ b2

l wl suggests that the stability
of the interface, i.e. the buoyancy step �g′, has no bearing on the rate of entrainment
across it even at relatively low Froude numbers (e.g. FrT ≈ 0.9).

To allow comparison, figure 3 plots FrT against Q∗/(b2
l wl) for each formulation,

together with the respective authors’ data. A significant amount of scatter is evident
in the data although the reasons for this are not entirely clear. However, estimating
the interfacial Froude numbers accurately for these experiments is difficult as, for
example, plume width bl and vertical velocity wl on impingement were not measured
directly but based on estimates from plume theory with a suitable origin correction.
Moreover, the entrainment fluxes were also not measured directly but inferred from
measurements of front movement. We shall evaluate our model for the emptying of
the box using each of the formulations (2.4a), (2.4b) and (2.4c) which hereafter we
refer to as mixing models I, II and III, respectively.

Observations and predictions indicate that turbulent entrainment is most vigorous
during the early stages of a purge. At later times, observations show that the
impingement of the fountain with the original-layer/middle-layer interface may cease
(Hunt & Coffey 2010, figure 6) and the fountain-top entrainment flux from the lower
layer thereby reduces to zero. We invoke a simplified model for the development of
the inflow through the middle layer, namely, that of a highly forced fountain, and do
not capture the aforementioned effect. Figure 4 plots the predicted decrease of FrT

with time indicating a reduction in entrainment flux (see (2.4a) or (2.4b)). In principle,
our model could be adapted in order to ‘switch’ entrainment off once the fountain
fails to reach the interface, in other words when the middle layer depth (hu − hl)
exceeds the fountain’s rise height. The behaviour of the fountain in the middle layer
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corresponds to the removal of the original lower layer. Thereafter, there is a slow decrease in
FrT .

is complex and the scaling for its penetration depth varies with Frf . Kaye & Hunt
(2006) show that there are multiple fountain regimes each with a different rise height
dependence on Frf . Moreover, the fountain source conditions are time-varying and
the environment is not quiescent. Including this extra layer of complexity to the
model is unlikely to lead to further physical insight and the close agreement achieved
on comparison with measurements (§ 3) shows that the potential overestimation of
entrainment flux for large times does not have a marked effect.
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2.2. Non-dimensionalization

Dimensionless (hatted) variables are now introduced as follows:

t̂ =
t

tE
, Q̂ =

Q

Q0

, ĥ =
h

h0

, ĝ′ =
g′

g′
0

, b̂ =
b√
A∗

, ŵ =
w

(h0g
′
0)

1/2
. (2.5)

The time scale tE = (2S/A∗)(h0/g
′
0)

1/2 is the time taken to empty (i.e. drain out of
the box) a dense fluid layer of initial depth h0 in the absence of mixing (see Linden
et al. 1990), Q0 = A∗(h0g

′
0)

1/2 is the volume flux through the box at t =0 (see (2.2)),
and (h0g

′
0)

1/2 is a characteristic buoyancy-induced velocity with characteristic reduced
gravity identical to that of the initial lower layer, i.e. g′

0 = g′
l(t = 0). The jet width is

scaled on
√

A∗ as this provides a characteristic opening radius through which the jet
propagates and allows the governing equations to be reduced to their simplest form.
On substituting for R, ξ0 and λT from (1.1) and non-dimensionalizing, the governing
equations (2.1) reduce to

1

2

dĥl

dt̂
= −(Q̂+Q̂∗),

1

2

d

dt̂
(ĥu−ĥl) = Q̂∗+Q̂j and

1

2

d

dt̂
[ĝ′

m(ĥu−ĥl)] = Q̂∗. (2.6a)

The dimensionless volume flux through the box, Q̂, in the inflowing jet, Q̂j , and

turbulently entrained Q̂∗ are, from (2.2), (2.3) and (2.4), respectively

Q̂ = [ĥl + ĝ′
m(ĥu − ĥl)]

1/2, Q̂j = 0.25Q̂
1

λT

(
1

ξ0

− ĥu + ẑv

)
, (2.6b)

and

I.
Q̂∗

b̂2
l ŵl

= 0.67FrT
3, II.

Q̂∗

b̂2
l ŵl

=
1.0FrT

3

1 + 3.1FrT
2 + 1.8FrT

3
or III.

Q̂∗

b̂2
l ŵl

= 2.0,

(2.6c)

where

FrT = 2−1/8 R∗1/4

λ
1/2
T

ŵl

(b̂l(1 − ĝ′
m))1/2

, (2.6d )

ŵl = 7
√

2
λT

R∗

(
1

ξ0

− ĥl + ẑv

)−1

, b̂l = 0.107 × 2−1/4 R∗1/2

λT

(
1

ξ0

− ĥl + ẑv

)
, (2.6e)

R∗ =

(
1

c2
T

+ R2 1

c2
B

)1/2

and ẑv =
λT

0.107π1/2
. (2.6f )

The system of equations (2.6a)–(2.6f) were solved using Runge–Kutta methods of
orders four and five for a given point in the {R, λT , ξ0} parameter space subject to
the initial conditions

ĥl(t̂ = 0) = 1, ĝ′
u(t̂ = 0) = 0, ĥu(t̂ = 0) = 1, ĝ′

m(t̂ = 0) = 0, ĝ′
l(t̂ = 0) = 1. (2.7)

The middle layer has zero thickness at t̂ =0 and, hence, for any finite ĝ′
m(t̂ = 0),

the total buoyancy contained in this layer is initially zero. As a consequence, the
layer does not contribute at t̂ = 0 to driving the flow. Furthermore, as no mixing has
occurred at t̂ =0, and thus no buoyant fluid has been drawn into the middle layer we
have chosen ĝ′

m(t̂ = 0) = 0.
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No. Symbol R λT ξ0 A∗ (cm2) g′
0 (cm s−2) tE (s) FrT (0)

1 ✩ 13.0 1.28 0.41 16.1 37.2 85.6 0.08
2 + 3.80 0.57 0.50 16.1 15.7 146.3 0.33
3 � 0.36 0.36 0.24 5.4 37.2 196.8 0.54
4 × 0.22 0.14 0.50 3.6 18.8 597.6 1.08
5 � 0.21 0.13 0.51 3.4 18.7 638.9 1.09
6 ∗ 0.36 0.17 0.52 5.7 13.3 461.1 1.18
7 ◦ 0.36 0.16 0.53 5.2 35.6 310.4 1.20
8 � 1.0 0.23 0.63 11.3 35.6 154.2 1.22
9 � 0.36 0.15 0.6 5.8 45.1 260.5 1.46

10 � 0.36 0.13 0.70 6.0 37.2 303.0 1.89

Experiment 1 � 5.66 0.22 1.0 4.3 – – 0.39
Experiment 2 � 2.28 0.29 1.0 18.4 – – 0.87

Table 1. Conditions for the experiments (numbered 1–10) presented in § 3. For the experiments
we performed, S = 1200 cm2 and H = 30 cm. We have taken cT = cB = 0.6 (Ward-Smith 1980)
to estimate A∗ and tE . Experiments 1 and 2 refer to the experiments of Linden et al. (1990).

3. Model validation
A series of experiments were performed, where R, λT and ξ0 were varied such

that FrT (0) increased (see table 1), using the same emptying-box rig described
by Hunt & Coffey (2010). Density profiles were deduced using a dye-attenuation
technique (Cenedese & Dalziel 1998; Hunt & Coffey 2010). The heights of the
interfaces between layers were then determined by locating peaks in the gradient of
the density profiles. Data from Linden et al. (1990), experiments 1 and 2 in table 1,
were also compared with our model.

Figure 5 plots the dimensionless depth of the lower layer (ĥl = hl/h0) against
dimensionless time (t̂ = t/tE) for each of our 10 experimental runs. Theoretical
predictions are plotted for each of the formulations of Q∗ (I, II and III; see (2.4)).

Predictions based on mixing models I and II both provide good agreement with the
experimental results for low values of FrT (�0.67) where interfacial mixing was not
observed in experiments (e.g. for runs 1 and 2, the predictions based on I and II differ
by less than 1 % and are graphically indistinguishable in our plots). For both I and II,
Q∗/(b2

l wl) ∼ FrT
3 � 1 for FrT � 1, hence, the predicted interfacial mixing is negligible

and in this limit the two models are equivalent. As FrT is increased, mixing model
I over predicts the volume flux of fluid turbulently entrained from the lower layer;
apparent by the lower interface descending too rapidly compared with measurements
(see runs 7–10). Conversely, mixing model II under predicts the entrainment flux;
apparent by the lower interface descending too slowly compared with measurements.
Mixing model III provides the best comparison at large Froude numbers.

Figure 6(a) shows a time series of the horizontally averaged dimensionless reduced
gravity profiles in the box, measured using the dye-attenuation technique, and
figure 6(b) a time series of the corresponding theoretical predictions. Figure 6(c)
shows the difference between the experimental results and the theoretical predictions.
Mixing model II yields the most reliable predictions to the overall developing density
stratification. The predictions based on mixing models I and III are poorer, with an
over prediction of the reduced gravity in the middle layer (evident by the red-coloured
region in figure 6c).
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Figure 5. Lower interface height hl/h0 versus time t/tE . Predictions show: mixing models
I (solid line), II (dashed line) and III (dashed-dotted line). Error bars typical for all runs
are shown on a single data point in runs 1 and 3. The value of FrT (0), and thus the
expected/observed vigour of interfacial mixing, increases from runs 1–10 (see table 1). (a) The
present experiments. (b) Experiments by Linden et al. (1990).

The time series highlight a limitation of the model. Though two distinct density
interfaces are evident (regions of rapidly changing colour in figure 6a), the middle
layer is not uniform in the early transients. This is most apparent in the contouring
visible in the middle layer of figure 6(c), which shows the difference between theory
and experiment for run 5. However, the theoretical model developed (particularly
when mixing model II is used) predicts the broad characteristics of the developing
stratification remarkably well for a simplified model.

4. Analytical solutions
The governing equations (2.6) may be solved analytically for two cases, namely

for mixing model I under the assumption that ĝ′
m � 1 (i.e. �g′ ≈ g′

l), and directly for
mixing model III.

Whilst a lower layer of the original density ρ0 remains, i.e. for hl > 0, the volume
flux Q is dependent solely on the total box-integrated buoyancy B (see § 2.1.1, (2.2))
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Figure 6. Time series of the non-dimensionalized reduced gravity ĝ′ = g′/g′
0 profile within the

box. The colour at a given point denotes ĝ′ at the corresponding depth ẑ = z/h0 and time
t̂ = t/tE . (a) As measured in experiment (run 5) and (b) as predicted with mixing models I, II
and III (from top to bottom). (c) Difference between experimental results (a) and theoretical
predictions (b). The positions of the upper and lower interfaces can be clearly seen.

and is independent of the buoyancy distribution. In other words, at this stage, the
interfacial mixing that has occurred has no influence on the rate of draining Q. Thus,
the dimensionless volume flux may be written explicitly in terms of t̂ as

Q̂ = 1 − t̂ for ĥl > 0. (4.1)

4.1. Case 1. Mixing model I, ĝ′
m � 1

The flux entrained from lower to middle layer is, from (2.4a) and (2.6d),

Q̂∗ = 0.67b̂2
l ŵlFrT

3 = d1

λ2
T

R∗3

(
1

ξ0

− ĥl + ẑv

)−7/2

(1 − ĝ′
m)−3/2, (4.2)

where d1 = 0.67 × 0.1071/2 × 74 × 23/2. Assuming ĝ′
m � 1, (4.2) reduces to

Q̂∗ = d1

λ2
T

R∗3

(
1

ξ0

− ĥl + ẑv

)−7/2

. (4.3)

The source momentum flux and Reynolds number for the inflowing jet are
dependent on the instantaneous volume flux (∝ B(t)1/2, (2.2)) and the area of
the vent through which the jet issues. As B(t) is a decreasing function of time,
after some period the Reynolds number for the flow through the openings will be
sufficiently low that viscous effects begin to play a role in the subsequent draining –
this low-Reynolds-number regime is not considered herein. Thus, the condition ĝ′

m � 1
is not incompatible with having turbulent jets at the inlet and outlet other than for
sufficiently large times when little total buoyancy B(t) remains in the box. From
(2.6a), conservation of volume requires

1

2

dĥl

dt̂
= −(Q̂ + Q̂∗) = −1 + t̂ − d1

λ2
T

R∗3

(
1

ξ0

− ĥl + ẑv

)−7/2

. (4.4)
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Substituting ω = d1(λ
2
T /R∗3) and χ = ((1/ξ0) − ĥl + ẑv) yields

1

2

dχ

dt̂
= 1 − t̂ + ωχ−7/2, (4.5)

where χ is the dimensionless distance between the virtual origin of the inflowing jet
and the lower interface position. Denoting χ0 ≡ χ(t̂ = 0) = ((1/ξ0) − 1 + ẑv), solving
(4.5) gives

χ(t̂) = χ0 + 2
χ

7/2
0 + ω

χ
7/2
0

t̂ − χ8
0 + 7ωχ

7/2
0 + 7 ω2

χ8
0

t̂2

+
7

3

ω
(
χ8

0 + 25ω χ
7/2
0 + 16 ω2 + 9 χ7

0

)
χ

25/2
0

t̂3 + O(t̂4). (4.6)

4.2. Case 2. Mixing model III

From (2.4c),

Q̂∗ = 2.0b̂2
l ŵl = d2

1

λT

(
1

ξ0

− ĥl + ẑv

)
, (4.7)

where d2 = 7×2.0×0.1072. Conservation of volume for the lower layer (2.6a) requires

1

2

dχ

dt̂
= 1 − t̂ + ψχ, (4.8)

where ψ = d2/λT , which may be solved directly to give

χ(t̂) =
1

2ψ2
+

1

ψ
(t̂ − 1) + e2ψt̂

(
χ0 +

1

ψ
− 1

2ψ2

)
. (4.9)

Figure 7 plots the experimental data and interface positions predicted by solutions
(4.6) and (4.9). The series solution (4.6) provides a very good match to the experimental
data. It is noteworthy that the two-layer model proposed by Linden et al. (1990)
extended with additional terms to account for the entrainment flux, the final term in
(4.5) and (4.8) shows such good agreement with the measurement.

5. Discussion
Further examination of the theoretical model developed enables additional insight

into unidirectional emptying-box flows. By comparing the predictions and the
experimental data for the three mixing models, and by applying the model to a
wider range of parameter space than can be effectively or reasonably investigated in
the laboratory, we are able to comment on entrainment fluxes across density interfaces
and draining times.

5.1. Entrainment across density interfaces

The developing stratification in the emptying boxes examined was well predicted by
mixing models I and II for small FrT , and by mixing model III for large FrT (figure 5).
These results support the findings of Kumagai (1984), i.e. that the non-dimensional
entrainment flux scales as the cube of FrT for small FrT and tends to a constant
value for large FrT . Runs 9 and 10 indicate that this constant value lies between that
suggested by Kumagai (1984) and by Lin & Linden (2005), i.e.

0.56 � Q∗/b2
l wl � 2.0 for FrT � 1,

Q∗/b2
l wl ∝ FrT

3 for FrT � 1.

}
(5.1)
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Figure 7. Dimensionless interface height versus dimensionless time. The solid line is the
series solution (4.6) and the dashed-dotted line the analytical solution (4.9).

5.2. Draining times

Given, for a range of initial conditions, the original layer will have drained completely
from the box after some time, tD say, leaving a two-layer system (i.e. a mixed layer
below a layer at ambient density) and, thereby, a basic stratification not dissimilar
from that at t = 0, the question of whether the flow is cyclic arises. This is not the
case, however as unlike the dynamics initiated from t =0, in which the inflowing jet
is confined within the middle layer and notably does not penetrate through the lower
layer (whose density remains constant), for t > tD inflow penetrates the mixed layer
which gradually dilutes with time.

In contrast to the classical displacement flows described by Linden et al. (1990),
the unidirectional emptying box does not generally drain completely (i.e. empty) of
buoyant fluid in a time tE . However, we may define a draining time tD as the time
taken for the lower interface to reach the base of the box so that at t = tD , all fluid
of the lower layer density at t = 0 has emptied from the box. As fluid is only ever
removed from the lower layer, tD is bounded from above by the classical displacement
flow emptying time, i.e. tD � tE . From (5.1), the non-dimensional entrainment volume
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flux is bounded by

0 �
Q̂∗

b̂l
2ŵl

� const.

with the models of Kumagai (1984) and Lin & Linden (2005) suggesting this constant
is in the range 0.56–2.0. The lower bound Q̂∗/b̂l

2ŵl = 0 being that entrained when
FrT =0. Thus, from (2.6a),

−Q̂ �
1

2

dĥl

dt̂
= −(Q̂ + Q̂∗) � −

(
Q̂ + 2.0b̂2

l ŵl

)
. (5.2)

This may be solved to give

2t̂ − t̂2 + χ0 � χ �
1

2ψ2
+

1

ψ
(t̂ − 1) + e2ψt̂

(
χ0 +

1

ψ
− 1

2ψ2

)
. (5.3)

Thus, the non-dimensional draining time t̂D = tD/tE is bounded by

a � t̂D � b, (5.4)

where

a = 1, b =
1

2ψ

[
−1 + 2ψ + 2ψ2 + 2ψ2χ0 − W

(
e−1+2ψ+2ψ2+2ψ2χ0 × [−1 + 2ψ + 2ψ2χ0]

)]
,

(5.5)

and W (x) is the Lambert W -function. (5.4) indicates that the lower bound on t̂D is a
function of ψ (∝ 1/λT ) and χ0 (a function of ξ0 and λT ), and is independent of R.
Figure 8 shows contours of the lower bound on t̂D in the {λT , ξ0} parameter space.
Decreasing λT or ξ0 results in a decrease in this lower bound. Whilst for sufficiently
small λT or ξ0 we are able to reduce this lower bound to zero, the contours indicate
that for a significant portion of the parameter space t̂D > 0.2.

Figure 9 shows tD for various slices through the {R, λT , ξ0} parameter space
calculated through successive runs of the theoretical model using mixing model
II. These explorations of the parameter space also suggest that t̂D is bounded from
below and, thus, that the lower layer can not be removed faster than some proportion
of tE .

6. Implications for night cooling
To highlight some implications of interfacial mixing to a night-cooling application,

we consider the purging of a room the size of a typical open plan office. The opening
area is taken as 1 % of the 225 m2 floor area (a percentage in keeping with accepted
design guidance, Etheridge & Sandberg 1984). The purge is initiated by a layer that
is initially two-thirds of the floor to ceiling height of 3 m and 15◦C warmer than the
exterior night air at 5◦C.

In figure 10, we plot four cases, focusing on the dimensionless warm-layer depth
variation with time and mean interior–exterior temperature difference for the initial
conditions given in table 2. These cases illustrate the sensitivity of night purging to
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Figure 8. Contours of the draining time lower bound from (5.4). From left to right each
vertical line corresponds to FrB = 0.33 at the values R = 0.3, 0.5 and 0.7. As unidirectional flow
requires FrB � 0.33 (figure 2), the bound on t̂D for a given R is only valid to the left of the
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the distribution of the ventilation openings. In figure 10,

�T (t)

�T 0

=

∫ H

0

�T (z, t) dz∫ H

0

�T0(z) dz

, (6.1)

where �T (z, t) is the temperature difference between the interior and exterior at a
height z and time t , and �T0(z) = �T (z, t =0). It is clear that the rate of purging of
warm air from the layer (figure 10a) may be significantly enhanced, without the need
for increasing the total opening area, by simply reducing the area of the lower vent
relative to the upper. Additionally, figure 10(b) shows that the normalized temperature
difference increases over the time interval shown on reducing the area of the lower
vent relative to the upper. An architect, or designer, may therefore control a night
purge by adjusting the relative areas of the vents.

7. Conclusions
Hunt & Coffey (2010) showed that the emptying of dense fluid from a box that

connects to an external environment through high and low-level openings may lead to
a layered internal stratification and that the stratification can be well approximated
by three well-mixed layers.

Under this assumption, we have developed a model to predict the evolving
stratification. Focusing on the portion of the parameter space where unidirectional
flows occur through both top and base openings (FrB(0) > 0.33, Hunt & Coffey 2010),
we have shown through the use of simple modelling techniques that good predictions
of the developing stratification are possible.
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The model has allowed three different formulations describing the mixing across
density interfaces developed previously by Baines (1975), Kumagai (1984) and Lin &
Linden (2005) to be compared in this application. These models were shown to vary
in their ability to predict the interfacial mixing over different regions of the parameter
space. The experiments presented herein support the hypothesis that for small Froude
numbers (FrT ) the normalized volume flux (Q∗/(b2

l wl)) turbulently entrained across
an interface scales like the cube of the Froude number. Conversely, for large Froude
numbers the normalized entrainment flux tends to a constant value (0.56–2.0). Due
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Upper Lower
Case opening (%) opening (%) R λ ξ0 FrT FrB

1 20 80 4 0.67 0.67 0.37 1.42
2 40 60 1.5 0.58 0.67 0.87 1.03
3 50 50 1 0.53 0.67 1.14 0.82
4 60 40 0.67 0.47 0.67 1.38 0.62

Table 2. Room opening distribution, geometric ratios and vent Froude numbers.
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Figure 10. Plots of normalized (a) warm-layer depth and (b) mean temperature difference
between interior and exterior against time based on model II. Arrows indicate predictions for
decreasing upper opening area (i.e. case 1 through to case 4) for the conditions given in table 2.

to the large amount of scatter present in measurements of entrainment fluxes (see
figure 3), one might argue that a simple formulation for the entrainment flux is
as appropriate as the more complicated relationship suggested by Kumagai (1984),
(2.4b). For example, one might expect the entrainment flux to follow

Q∗

b2
l wl

∝
(

1 +
1

FrT
3

)−1

.

The upper bound on the entrainment flux (achieved as FrT → ∞) implies that it is
not possible to remove the lower layer faster than some minimum time. By considering
the limiting cases of the model (i.e. minimizing and maximizing the entrainment flux),
we have shown that the time to remove the lower layer tD is bounded by tE � tD � 0.2tE .
This has implications when considering, for example, flushing of heat from a room.
One approach may be to deliberately mix the air as the warmer interior air is purged
in order to create a reasonably well-mixed interior of a (comfortable) temperature
between that of the cool exterior and the temperature at the beginning of the purge.
Our analysis suggests that, for a given A∗, there is a minimum time required to mix
the interior and that this time exceeds approximately 1/5 of the classical emptying
time tE .
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